post

Cosmic Quote #18

“Quantum mechanics is magic.”–Daniel Greenberger.

Image credit: Matthias Giesen http://matthiasgiesen.wordpress.com/page/8/

Image credit: Matthias Giesen http://matthiasgiesen.wordpress.com

Quantum mechanics.  Niels Bohr said if you’re not shocked by it, you don’t understand it.  Richard Feynman said nobody understands it.  Albert Einstein said god does not play dice. Stephen Hawking said god does play dice and sometimes he hides the results.  I say who the hell cares, as long as they give me fodder for my blog.  Or my wife’s horse.  Or my accountant’s newt.  It all fills  space, thus proving the vacuum is not empty.  Isn’t physics fun?  [Note: vacuum is one of the few words in the English language containing “uu.”   But it’s not as cool as muumuu, duumvir or menstruum, proving that linguistics is fun, too.]

post

Quantum Weirdness 106: Are dreams real?

 “Reality is wrong.  Dreams are for real.”–Tupac Shakur

It has been advocated–I can’t recall by whom–that our sleep dreams may actually be real events in an alternate universe.   I doubt it;  that’s too far over the top for my taste.  But the following unusual dream–one I’ve actually had–will serve for now as my final installment of the Quantum Weirdness Primer.   It’s a fitting intro to my next two conjectures, both of which deal with the possible nature of consciousness in relationship to quantum physics.  The dream was short and unexciting, but opened up a Pandora’s box of questions.

The Infinite Office Building

The Flatiron building as it appeared around the time of my father's birth in 1919.  It wasn't actually in the dream, but it's just too cool not to include.

The Flatiron building as it appeared around the time of my father’s birth in 1919. It wasn’t actually in the dream, but it’s just too cool not to include.

I am working in an art-deco era office building in the Flatiron District of Manhattan.  It is a beautiful, clear spring day and the New York skyline fills my panoramic view.  I get up to go to the water cooler when a realization hits me.  This is an infinite office building with an infinite number of floors.  Every floor represents an alternate universe–an infinity of them.   Every possible universe that I could, or possibly do exist in, is here.   I ponder the implications and head toward a back staircase to explore.  Which way should I go? Up or down?  Where will it bring me?  But a chilling thought hits me just as lift my hand to open the exit door leading to the stairs.  What if I can’t find my way back?  Sure, this specific universe that I currently exist in must reside somewhere within an infinity of universes.   But by definition, if I explore starting from this one, there will always be a finite number behind me and an infinite number ahead of me.  I would likely never find my way back within my lifetime, or perhaps even an infinite number of lifetimes.  I lower my hand, go back to my office,  and wake up.

The dream is reminiscent of David Hilbert’s concept of the Infinity Hotel, an explanation of which is in the entertaining short video below.  Strangely enough, I first heard of this idea two weeks after having the Infinite Office Building dream, when I read about it in detail in David Deutsch‘s The Beginning of Infinity.  In any case, the conclusion I reached from my hesitance to explore, was a realization that maybe it really doesn’t matter how many potential or actual universes there are if we are only conscious in one.  Or one at a time.  Or does it?  I’ll discuss these enigmas in my next two Millennium Conjectures, after a finite number of intervening posts.   [Video credit: TED Ed]

 

post

Quantum Weirdness 105, Review: How to teach Quantum Physics to Your Dog

        “I have a very good nose. I can sniff into extra dimensions. They’re full of evil squirrels. With goatees.”–

Chad Orzel’s dog, in How to Teach Quantum Physics to Your Dog.

Chad Orzel is my kind of guy.  If it wasn’t for the fact that How to Teach Quantum Physics to Your Dog was copyrighted in 2010, I would have sworn he had read my Law of Canine Chaos before writing the following.

Sound waves are pressure in the air.  When a dog barks, she forces air out through her mouth and sets up a vibrations that travel through the air in all directions.  When it reaches another dog, that sound wave cause vibrations in the second dog’s eardrums, which are turned into signals in the brain that are processed as sound, causing the second dog to bark,  producing more waves, until nearby humans get annoyed.  [emphasis mine]

Amen, brother.

But the point is, he explains and summarizes beautifully–and expands upon lucidly–all the points in my first four Quantum Weirdness posts.  He does so in a manner clear enough that, if you can’t understand it, at least your dog will.  Maybe the pooch can then explain it to you. Either way,  I recommend it highly.  Unfortunately, though,it seems to be out of print in the US.   It is available, mostly from the UK, from various resellers on ebay and barnesandnoble.com.  Orzel has also written How to Teach Relativity to Your Dog and How to Teach Physics to Your Dog.  Before you know it, those clever mutts will be running the LHC at CERN.  I doubt they will be looking for the Higgs Boson, though.

Copyright 1984, Chronicle Features

post

Millennium Conjecture #3: The Future (Part Two)

I Conjecture:  Every Possible Future Exists

Part Two: Quantum Mechanics and The Future

“The best way to predict the future is to invent it.”–Alan Kay

Note: In case you had not surmised it, the most literal title for this conjecture would be “Every Physically Possible Future of Our Universe Exists.”   There is probably not a future in our universe where the laws of physics will change to allow Harry Potter to cast a patronus spell on demontors.

Inventing the quantum future at NASA

Alan Kay’s proposition suggests a philosophical viewpoint that emerges from this conjecture.  But for a better quote to describing its why and wherefore, I harken back to the E.B. White words from Conjecture #2Everything that is not forbidden is mandatory.  It all boils down to Quantum Mechanics.   Many physicists have latched on to this notion;  given enough time, every physically possible combination of matter and energy is bound to occur.  It’s all just a matter of probability.  That said, there are clearly at least two distinct ways of looking at it, depending on which interpretation of quantum mechanics you ascribe to:  Copenhagen or Many Worlds.  Although there are other interpretations, these two have garnered the lions share of advocates in the scientific community, and the notion that every possible future exists can emerge from either one of them.  (See Quantum Weirdness 102 and 103 in this blog for an explanation of both ideas.)

The difference between the two as pertains to the future can easily be stated as virtual vs. actual.  The Many Worlds interpretation asserts that every physical possibility will become an actual reality in an infinitely expanding sea of parallel universes.  Every possible future is, or at least becomes, physically real.  On the other hand, Copenhagen implies that there is no absolute physical reality until the quantum wave function breaks down, that there is only probability on the sub-atomic level until we observe it. From this we can infer that every possible future exists only as a statistical  probability, and only the one we ultimately experience will actually exist.

So what’s the difference?  There isn’t any.  It makes no difference, from the practical experience of entities conscious in a single one of them, whether the futures are real or virtual; we can’t tell the difference.  Every one of those physical realities is still a real possibility.  The good news?   There most certainly is a future out there where you win the lottery!  The bad news?  The only sure way to “invent” that future is to buy every possible number combination.  I don’t recommend quitting your day job.  😦

Up next: The Conjecture of Composite Consciousness.  (Warning: the next couple of conjectures will be quite a bit more radical and original than the those already stated herein.  Actually, I’m warning myself.  Anybody know where I can get some flame retardant garb?)

post

Conjecture #3: The Future (Part One)

I Conjecture:  Every Possible Future Exists

Part One: The Post-Newtonian Wordview

“The Future ain’t what it used to be.”–Yogi Berra

Yogi

Yogi, philosopher extraordinaire, deep in thought

Yogi was right. Literally.

He had absolutely no idea what he was talking about, but he was right nonetheless.  For the way we view the future is directly related to how we view physical reality. Ergo, as our understanding of physical reality changes, so changes how we think about the future.   An entire graduate level lecture could probably be based on this conjecture.  I’ll condense the basic idea to a few paragraphs.

Before Apple, the company, there was apple, the fruit.  And before that fateful day when one of those red orbs conked one Isaac Newton on the noggin, worldviews were simplistic and not generally  based on science.   They were mostly mystical or religious.  Supernatural forces ruled the world and what they had in store for mankind was up to them; it was not to be known by us.  But when the soon-to-be “Sir” Isaac set forth his rules of motion and gravity classical physics was born.  Every action had an equal and opposite reaction, every force and its interaction with mass was theoretically calculable, and therefore predictable.  Newton’s laws ruled physics, and indeed, most science based worldviews for nearly 250 years.

Then two guys named Einstein and Planck came along and screwed up the whole thing.  They were followed by the likes of Heisenberg and Bohr and Schrodinger, who threw the monkey wrenches of quantum mechanics, and most disturbingly, quantum uncertainty, into the mechanisms of physics.  Nothing was ever the same again.**

Just how did these 20th century scientific revolutions, along with chaos and complexity theories, alter the Newtonian worldview?

The Newtonian worldview was deterministic, the post-Newtonian worldview is not.  It was theorized, under Newton’s classical laws, that if one could know the position and momentum of every particle of matter and energy in the universe, then one could know everything that has ever happened and could predict everything that ever would happen in the future.   Quantum mechanics and uncertainty skewered that notion; it killed it stone dead.  As explained in my Quantum Weirdness primers, it is not possible to simultaneously know the exact position and momentum of quantum objects, and interactions of quanta with their environment are only calculable as probabilities. 

In other words, the Newtonian worldview asserted that we could calculate exactly where any particle of matter or energy would be at any time.  The post-Newtonian worldview states that we can only calculate the probability of finding it in a given position at a given time.  The disconcerting part of that last statement is the “finding” part.  For it asserts exactly that, the probability of finding it if we look for it; it does not predict where it is, for until we look it is effectively in every possible position at once.

How does this affect our view of the future and my conjecture that every possible future exists?  In the Newtonian worldview, there is no free will; everything is determined by the existing state of the universe and there is therefore only one possible future.  That would be the one that follows from applying Newton’s laws to the current state of every bit of matter and energy in the universe.  But in the post-Newtonian world, those rules do not work on a quantum level.  Position and momentum are uncertain and results of interactions can only be stated as probabilities.  In a non-deterministic world, free will is enabled and the totality of the future is unpredictable no matter how much data we have to crunch.

Does this future exist?

OK.  Many futures are possible.  But how can I assert that every possible future exists?   I’ll take that up in Part Two of this conjecture.

**It should be noted that while Albert  Einstein, along with Max Planck, laid the foundations of quantum mechanics, he never believed its predictions of uncertainty and randomness.  Perhaps his most famous quotation, “god does not play dice,” refers to this very matter.  He spent much of the last thirty years of his life attempting to find a deeper meaning–hidden variables–that would give the lie to these notions.  He failed and was ultimately proven wrong.  More about this in a future conjecture.

post

Quantum Weirdness 104: Heisenberg’s Uncertainty

“Doubt is unpleasant, but certainty is ridiculous.”–Voltaire

Heisenberg may be dead, but his uncertainty principal is alive and kicking.
(Image credit unknown)

It was the end of the Newtonian worldview.   Early in the 20th century relativity and quantum mechanics created a new scientific outlook on reality–counter-intuitive and downright….well…weird.  The final nail in the coffin of so-called Newtonian determinism was put forth by one Werner Heisenberg in 1927: the uncertainty principle.   Simply stated, you can’t exactly know both the momentum and location of a quantum object.  The more precisely you know one, the less precisely you know the other.   And while recent news headlines suggest to some that Heisenberg has been overturned, this is absolutely NOT the case.   It was thought that the very act of measuring a quantum particle added to the uncertainty, but that was never really part of Heisenberg’s equation–which in fact can also apply to macroscopic phenomena like sound and water waves.  So while a team from the University of Toronto was able to devise a means to measure a quanta (such as an electron or photon) with minimal increase in uncertainty, even they admitted “the quantum world is still full of uncertainty, but at least our attempts to look at it don’t have to add as much uncertainty as we used to think!”

Heisenberg’s principle plays a critical role in something that is rather significant in the foundations of modern philosophy, and as I see it, civilization itself.  That would be how we view the future.  This will be explained in the next conjecture.

Here is a simple video demonstration of the concept by Walter Lewin of MIT–a single-slit experiment.

If you’re brave enough to tackle the math, here is a link to another video from Mind Bites that explains it in terms so simple even I can understand it.  Er…maybe.

post

Vacation Rerun: Quantum Weirdness 102, Equal Time for the Cat

Where’s Waldo?

By the time this post goes winging outward to the vastness of cyberspace,  Cheryl and I will be winging our way home from distant parts unknown. The next new post will return to the subject matter below, so bone up and be ready for brain cramps.

“I don’t like it, and I’m sorry I ever had anything to do with it.”
Erwin Schrödinger  (referring to Quantum Mechanics).

What better follow up to The Equation of Canine Chaos, then the infamous tale of Schrodinger’s Cat?

In Quantum Weirdness 101, we saw that the double-slit experiment revealed the wave-particle duality of sub-atomic quanta, and the fact that these troublesome little bits behave as if they are everywhere they could possibly be at once until an observer looks for them.  While the experimental proof that this happens is rock-solid, the explanation for what causes it is anything but.  For decades after its original discovery in the 1920’s, the predominant interpretation—essentially, in fact, the only one—was the so-called Copenhagen Interpretation.  It essentially states that the universe is just fuzzy on the sub-atomic level, it doesn’t affect our everyday macro-world, and we mortals should not worry about it otherwise.  Critics have said it is really no interpretation, and some facetiously call it the “shut-up-and-calculate” interpretation.   In 1935, Erwin Schrodinger posed perhaps the most famous mind experiment in all of physics to show that theoretically the Copenhagen Interpretation makes no sense.  More recently, physicists have been able to succeed in creating this quantum superposition with larger and larger bits of matter, which tends to shoot empirical holes in Copenhagen.

Anyway, this witty video does a good job of explaining the concept behind Schrodinger’s Cat.  And I’m pretty sure that no cats were harmed in its making—much to the chagrin of my dogs.

(Video Credit: Open University, on You Tube)

post

Quantum Weirdness 103: How Many Worlds?

“There is no question that there is an unseen world. The problem is, how far is it from midtown and how late is it open?” –Woody Allen

For the quantum physics-uninitiated, get ready for the weirdest of the weird: the many worlds interpretation of quantum mechanics.

In Quantum Weirdness 101, we talked about the wave-particle duality of sub-atomic quanta, and how they appear to be in a superposition of every possible trajectory and location until an observer measures them.

In Quantum Weirdness 102, we discussed The Copenhagen Interpretation, which basically states that reality is just fuzzy on that level.  They are only potential trajectories–probabilities–interfering with each other, and this doesn’t have a measurable effect on our everyday macro world.   But we also visited Schrödinger’s infamous cat–the mind experiment that poked a colossal hole in  Copenhagen.

Image Credit: University of Oregon, 21st Century Science

The Copenhagen interpretation remained the most popular explanation for decades, in spite of Schrödinger.   But in 1957 cosmologist Hugh Everett made an astonishing proposal.  He suggested that the particles themselves–not merely their probabilities–interfere with one-another.  In this interpretation, they actually take every possible trajectory, each in an alternate universe.  Effectively every physically possible history exists in a huge–possibly infinite–number of alternate universes. So when we look in the box containing that possibly dead or alive cat it is actually in two universes: alive in one, dead in the other.   We just see it in the one we are in.   Taken to the extreme, every one of us would exist in a countless number of alternate universes.   Some would be imperceptibly different from ours, in others we might not even recognize ourselves or the the world around us.  And while Everett was mostly ignored or derided in his day, his many worlds interpretation has become a leading explanation of quantum weirdness, rivaling even Copenhagen.

So where do I stand?  Agnostic.  It is a rather optimistic world view.  I hope it’s true; I’m afraid it isn’t.  But many of the world’s top physicists now lean towards many worlds, and David Deutsch, among others, makes some very convincing arguments using deductive reasoning if not direct evidence.  I will leave it at this: it is a strong possibility that greatly influences my millennium conjectures. For more detailed background, check out the Wikipedia articles on The Many Worlds interpretation,  as well as general overview of quantum mechanics interpretations.   Or if you prefer, here is an entertaining video, shamelessly lifted from YouTube.

post

Quantum Weirdness 102: Equal Time for the Cat

“I don’t like it, and I’m sorry I ever had anything to do with it.”
Erwin Schrödinger  (referring to Quantum Mechanics).

What better follow up to The Equation of Canine Chaos, then the infamous tale of Schrodinger’s Cat?

In Quantum Weirdness 101, we saw that the double-slit experiment revealed the wave-particle duality of sub-atomic quanta, and the fact that these troublesome little bits behave as if they are everywhere they could possibly be at once until an observer looks for them.  While the experimental proof that this happens is rock-solid, the explanation for what causes it is anything but.  For decades after its original discovery in the 1920’s, the predominant interpretation—essentially, in fact, the only one—was the so-called Copenhagen Interpretation.  It essentially states that the universe is just fuzzy on the sub-atomic level, it doesn’t affect our everyday macro-world, and we mortals should not worry about it otherwise.  Critics have said it is really no interpretation, and some facetiously call it the “shut-up-and-calculate” interpretation.   In 1935, Erwin Schrodinger posed perhaps the most famous mind experiment in all of physics to show that theoretically the Copenhagen Interpretation makes no sense.  More recently, physicists have been able to succeed in creating this quantum superposition with larger and larger bits of matter, which tends to shoot empirical holes in Copenhagen.

Anyway, this witty video does a good job of explaining the concept behind Schrodinger’s Cat.  And I’m pretty sure that no cats were harmed in its making—much to the chagrin of my dogs.

In the next installment: the many worlds interpretation of quantum weirdness.

post

Conjecture #1: Infinity (Part Two)

I conjecture:  The concept of infinity could not exist in a finite universe.

Part Two:  The Possibility of Infinite Space

“The universe is a big place, perhaps the biggest.”– Kurt Vonnegut

Douglas Adams called the universe “mind-bogglingly big.”  But “mind-bogglingly big” pales next to infinitely big.  And while the question of space being infinite may be somewhat easier to get around than time, it is certainly no bargain.

The first problem is that Vonnegut is dead-on right.  Our universe is only possibly the biggest place.  It used to be that “universe” meant everything.  But then the concept of “multi-verse,” with countless alternate or parallel universes, began to creep into astrophysics and cosmology.  To make matters worse, there is not just one potential level of parallel universe proposed, but four.*  So far.  Physicist and author Paul Davies argues that the concepts, while fascinating to contemplate, amount to philosophy–or even religious faith–if you can’t test them.   David Deutsch, among others, disagrees and deduces that the many worlds interpretation of quantum mechanics is the only one that makes sense, in terms of scientific explanation.  I’ll have more background on the various arguments surrounding interpretations of quantum mechanics–particularly The Copenhagen Interpretation vs. all others–in future posts.

Getting back to the question of infinity of our universe and/or the multiverse, there is indeed some scientific investigation aimed at determining the potential infinity of our own visible universe.  It involves the topology of its three-dimensional space and whether it is flat or curved.   I can’t go into details, as it involves rather advanced calculations from observations of the Cosmic Background Radiation–the earliest remnants of the Big Bang we are able to detect with current technology.  But the weight of the existing evidence seems to be pointing towards a flat topology that could be infinite.  Add that to the possibility of countless alternate universes of various kinds,   and I will assume for our purposes that space is at least potentially infinite.  [For a discussion of actual vs. potential infinity, see the Wikipedia article].   In the final installment on this conjecture, I will address one dimension of existence that I feel without doubt is potentially infinite: human imagination.    For an extended, if somewhat dramatic discussion of the possibility of an infinite universe, watch the video linked at the bottom of this article.

7-year universe image of background microwave radiation from NASA’s WMAP probe. (2010)

*As classified by MIT cosmologist, Max Tegmark

Text of this post ©2012 Mark Sackler.